Biaxial mechanical properties of intact and layer-dissected human carotid arteries at physiological and supraphysiological loadings.
نویسندگان
چکیده
Specimens of intact wall tubes of human common carotid arteries (CCA), internal carotid arteries (ICA) (n = 11, age 77.6 yr, SD 6.3), and related adventitia and media-intima tubes are mechanically examined. Cyclic, quasi-static extension-inflation tests at different axial stretches are performed on preconditioned tube specimens. Stress-free configurations show significant stress releases in the circumferential direction of the intact CCA and ICA walls and in the axial directions of the intact CCA walls and the CCA and ICA adventitias. All investigated tissues exhibit strong nonlinear, pseudoelastic mechanical behavior with small hysteresis. The "inversion" feature, where the pressure/axial stretch relationship becomes a vertical line, is found only for intact walls. Axial "inversion stretches" are 1.15 (SD 0.06) for CCA and 1.14 (SD 0.06) for ICA, and related external axial forces are 0.43 N (SD 0.15) and 0.30 N (SD 0.22), respectively. Significant negative correlations between age and axial inversion stretches for CCA (r = -0.67, P = 0.03) and ICA (r = -0.29, P = 0.04) are identified. Adventitias are very compliant at low pressures, but change into stiff tubes at high pressures. The burst pressure of the adventitia is beyond 250 kPa. A relatively low burst pressure of approximately 60 kPa is found in the media-intima tubes, in which the pressure/circumferential stretch relationships are almost independent of the axial stretches. Stress analyses indicate a high degree of material anisotropy for all investigated tissues. High circumferential and axial stresses occur in the media-intima tubes at physiological conditions. The obtained data are intended to serve for an improvement of constitutive laws, determination of constitutive parameters, and enhancing our knowledge of the mechanical functions of arteries and their associated layers in specific pathophysiological and clinical problems, such as hypertension and angioplasty with stenting.
منابع مشابه
Mechanical Properties of Healthy and Diseased Human Arteries
Major causes of atherosclerosis are biochemical and biomechanical changes in the wall of a blood vessel with a subsequent narrowing of its lumen. Untreated this disease can cause ischemic stroke or heart attack. An increase in lumen can be achieved by applying, for example, balloon angioplasty and stenting, which represents a mechanical solution for a clinical problem. These procedures can fail...
متن کاملBiaxial Buckling and Bending of Smart Nanocomposite Plate Reinforced by CNTs using Extended Mixture Rule Approach
In this research, the buckling and bending behaviour of smart nanocomposite plate reinforced by single- walled carbon nanotubes (SWCNTs) under electro-magneto-mechanical loadings is studied. The extended mixture rule approach is used to determine the elastic properties of nanocomposite plate. Equilibrium equations of smart nanocomposite plate are derived using the Hamilton’s principle based on ...
متن کاملEvaluation of Diameter Changes, Stress-strain Elastic Modulus and Stiffness in Normal and Atherosclerotic Common Carotid Arteries in Both Sex Based on End Pressure Variation
Evaluation of elastic properties of major arteries is subject of great interest with respect to the development of vascular diseases. In this study changes in diameter and cross-sectional area, stress-strain elastic modulus and stiffness of the common carotid arteries in healthy and atherosclerotic women and men were evaluated by using indirect end pressure changes. Variations in diameter and c...
متن کاملVibration Analysis of Carotid Arteries Conveying Non-Newtonian Blood Flow Surrounding by Tissues
The high blood rate that often occurs in arteries may play a role in artery failure and tortuosity which leads to blackouts, transitory ischemic attacks and other diseases. However, vibration and instability analysis of carotid arteries are lacking. The objective of this study is to investigate the vibration and instability of the carotid arteries conveying blood under axial tension with surrou...
متن کاملShear modulus of porcine coronary artery: contributions of media and adventitia.
The epicardial coronary arteries experience significant torsion in the axial direction due to changes in the shape of the heart during the cardiac cycle. The objective of this study was to determine the torsional mechanical properties of the coronary arteries under various circumferential and longitudinal loadings. The coronary artery was treated as a two-layer composite vessel consisting of in...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- American journal of physiology. Heart and circulatory physiology
دوره 298 3 شماره
صفحات -
تاریخ انتشار 2010